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ELEMENTS OF ACTIVE VIBRATION CONTROL FOR ROTATING MACHINERY

Heinz Ulbrich*
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Demands for higher frequencies, improved reliability, reduced noise, and
increased longevity, along with safety concerns, require an effectively con-
trolled rotor dynamics system. The desired requirements are often not met by
using only passive damping elements; further improvements can be achieved only
with the aid of active control. Showing how to construct a controller and how
to apply active control on rotating machinery is the intent of this report.

Different types of actuator concepts and their models are discussed.
The modeling of rotor systems is given in such a way that inclusion of active
elements can easily be achleved. The chosen modeling procedure, which is both
physically clear and handy for computer-oriented representation, permits both
the consideration of all mass and gyroscopic effects and a modular construc-
tion of the system. The meaning of controllability, observability, and spill-
over, with regard to actively controlled systems, and a method to check on
the system properties are discussed. A short introduction about control con-
cepts and the optimization of the controller is given. 1In the last section
several real applications demonstrate the design and application of active

vibration control.

INTRODUCTION

In the growing field of rotor system dynamics control, many different
methods have been applied. The methods that have been proposed for rigid and
flexible rotors differ in control concepts (refs. 1 to 8). The type of con-
troller that is most effective depends on the objectives. The controiler nor-

mally makes use of four elements:

(1) Displacement (proportional) feedback (P part), which allows one to
change the stiffness of the system or, in other words, to shift the
elgenfrequencies in the desired manner

(2) Velocity (derivative) feedback (D part), which permits one to increase
the system damping to (a) improve the stability of the system, (b) sta-
bilize unstable modes of the system, or (c) reduce resonance amplitudes

that can occur when rotors pass through critical speeds

(3) Acceleration feedback (A part), which can be used to eliminate or
reduce the influence of the mass or inertia (e.g., improving the con-
trollability in relation to applying active forces via the bearing hous-
ings (ref. 4), or compensating for the influence of fluid tnertia in

relation to hydraulic actuators (ref. 2))

*National Research Council - NASA Research Associate at Lewis Research
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(4) Integral feedback (I part), which is necessary for holding a rotor
position very precisely (no radial displacement) at a given location,
or for adjusting bearings to minimize rotor stress (minimum stress is
achieved by changing the features of the bearing or the foundation of

the bearing supports).

The type of feedback control that is chosen will depend on one's objec-
tives and the system itself.

To realize active control techniques for improving the dynamic behavior
of rotor systems, the following are required: (1) suitable actuators and
knowledge of their transfer characteristics; (2) modeling of the complete sys-
tem (including the active components); (3) choosing locations for actuators
and sensors (affects controllability, observability, and spillover effects);
and (4) having problem-adapted control methods for hardware as well as

software.

The key to successful active vibration control in rotor systems (1.e.,
systems with rotating machinery) lies in the availability of suitable actua-
tors. Some types of actuator that have been applied in industry or in the
test stage in the laboratory will be introduced in this report.

ACTUATORS, MODELS, AND TRANSFER CHARACTERISTICS

In general, there are two different ways to apply control forces on
rotating shafts in turbine engines, power generators, gearboxes, machine
tools, and such. The forces can act directly on the rotor or they may be
applied via the bearing housings. For practical applications the following

characteristics are very important:

(1) Actuators should not only be compact but also be capable of generat-
ing large forces.

(2) The amplitude range of the actuator should be at least as high as the
vibration amplitudes that have to be influenced. '

(3) The frequency range of the actuator (bandwidth) that can be obtained
will determine the applications. This means the design strategies for the
actuators will have to focus to a high degree on the actuator dynamics. In
this section three different types of actuators will be introduced and their
mathematical descriptions of the transfer characteristic will be given.

Magnetic Actuators

Magnetic actuators can be divided into two types: magnetic bearings,
which act directly on the rotor without contact (refs. 1, 2, 9, and 10), and
electromagnetic actuators, which apply forces to the rotor indirectly via the

bearings (refs. 3, 5, and 11 to 13).

Active magnetic bearing. - A typical assembly of electromagnets (EMXI,
EMX2, EMYT, EMYZ) is represented in figure 1. It is noteworthy that with this
arrangement of the magnets, radial movement of the rotor in the y-direction




causes no change in the total air gap of the magnetic circuits in the
x-direction (comparative effect). This is necessary for decoupling the forces
of the bearing between the x- and y-directions. The differential arrange-
ment of the electromagnets leads to a linear input/output characteristic
petween the forces acting directly on the rotor and the control voltages input
to the power amplifiers. The power amplifiers have to work, in this case, as
current sources. This relationship between the input voltages uy and uy
and the resulting forces Fy and Fy is given by

F k, 0 ][y, k  0][x
N (1)

Fy 0 ky|ly 0 k||y

where k, represents the force-voltage factor; k, the force-displacement fac-
tor (negative of stiffness); and x and vy, the radial displacements of the
rotor in the respective directions. Figure 2 shows a schematic of a
controlled-orbit magnetic bearing test rig to determine ky, k, and the fre-
quency characteristic. The rotor is fixed by ball bearings and its position
is measured by bullt-in noncontacting displacement transducers. Forces on the
rotor are simultaneously determined in the x- and y-directions by quartz
load washers. In order to decouple the forces into the two measurement direc-
tions, special axial linear roller guides are used. This means the quartz
load washers are attached to the foundation in such a way that a force in the
x-direction (and similarly, in the y-direction) does not influence the force
signal 1n the y-direction (x-direction); see references 10 and 14.

Electromagnetic actuator. - An electromagnetic actuator capable of
applying forces to the rotor indirectly via the bearing housing is shown in
figure 3. The scheme shows a Cross section of this active element, consisting
mainly of two annular electromagnets acting in differential principle on a
pull disk. If the power amplifiers work as current sources, the input/output
characteristic is described by the same equation as that for the magnetic bear-
ing (eq. (2). The transfer characteristic of the actuator is shown in fig-
ure 4(a). The control force is displayed as a function of the control
current. The deviation of the pull disk from its neutral position functions
as a parameter. Figure 4(b) gives an impression of the frequency characteris-
tic. Results show that the actuator can be modeled as a proportional transfer
element at up to 300 Hz (cutoff frequency). These results could be achieved
only by using special guided roller bearings to reduce friction in the guides
of the connecting rod. Magnetic bearings and electromagnetic actuators
require a relatively large amount of space in relation to the magnitude of
attainable forces: this drawback may be avoided by the use of hydraulically

controlled chambers.

Active chamber system. - The compact active chamber system, shown in
figure 5, 1s capable of generating very large forces and can thereby influ-
ence even large turbines weighing several tons (see ref. 15). The actuator
device consists mainly of four cylindrical chambers arranged in a circle
around the outer bearing housing. Each chamber is sealed at the top and bot-
tom by an elastic membrane. In order to decouple the forces in the x- and
y-directions, the bearing housing is supported against the membrane system by
linear roller guides. The influence of friction is thereby reduced as well.
Alternative methods of support result from design variations. One variation
supports the bearing via elastic rods - another, simply by chambers designed
in such a way that they have an adequate transverse compliance.

3




Actuator pistons, as an alternative to membranes, have the disadvantage
of possessing relatively large moving masses for the desired small displace-
ments (less than 0.02 in., or 1/2 mm); this has an unfavorable effect on the
transfer behavior at high frequencies. 1In addition, sealing problems occur,
and friction forces appear on contact surfaces.

From reference 16 a relation can be derived for the force generated as a
function of the fluid pressure P and the radius of the membranes R:

2
. (&) @
0 o)

The factor 2 {s a function of the ratio of outer radius R to inner radius
er

r and the reference magnitudes Py and R,. Setting R/r = 3, Pg = 1 bar,
and Ry = 1 cm, we obtaln Fo = 35 N. If we then choose R = 10 cmand P = 10
bar, the force generated would be F = 35 kKN. The membrane system has to be
des1gned in such a manner that both the stress caused by the pressure, and

the displacements are in a reasonable range. Here, a wide range of variation
is given by a specific choice of parameters. ,

For industrial appl1cations the frequency range (more than 200 Hz) is very
important. To include the actuator system into the overall system, with the
target being to design an efficient control, the input-output characteristic
of the system is necessary; it is given in the x-direction as

F ()

X
ux(t)

(3

TUw =

where uy(t) is the control voltage (input) to the servo valve and Fy(t) fis
the resultant force acting on the bearing housing. In the Laplace domain we
can obtain the resultant force as a function of the system parameters by
applying the continuity and the Bernoulll equations (under consideration of
hydraulic losses), the dynamic behavior of the servo valve, and the force equi-
Tibrium at the membrane, assuming neglect of the oil compressibility. The

resulting force equation is given by

F(s) = FV(S)Uy - F2(s)X (4)
where
A*Kv
FV = 3 ¥ (5)
1 ¢+ — $ + =3 K

wy u2) P

L ] * * *2
F2 - (A cTsZ) . (A Cyk, + A Cp + %——) (s + Gy 6)

Pq

or by transfofmat1on into the time domain the force equation betomes



* 1 * * * A*z .
Fo=fy- fZ = fy - A CiXg - A Cyxo * ACy+ E;a Xg = CuXg n

where fv can be obtained by the differential equation of the servo valve

*

K

x>

28 .
1 =z v v
3 fv + ~ fV + fv =K UV (8
wv v o]
or
mva + dva + Cva = bv UV | (9

The valve constants Ky, Kpq, the valve elgenfrequency wy, and the valve damp-
ing coefficient £, are constants normally given by the manufacturer of the
valve; A* 1s the active membrane area, Cy 1s the membrane stiffness, Cy s
a constant describing the oil fnertia, Cy and Cr are constants describing
fluid losses, Xo s a characteristic flow velocity, Uy 1s the control voltage
to the valve, and xg 1s the deflection of the bearing in the force direction.

Equation (7) describes the force that is applied to the bearing, and equa-
tion (9) represents the dynamic behavior of the valve that is stimulated by

the control input Uy.

An optimal design of a control system demands an adequate model of the
complete system. The effectiveness of the actuator system will depend on the
observability (which, in turn, depends on the measuring information) and the
controllability of the natural vibrations that are to be influenced (which
depends on the actuators used and their locations). In order to check on
these system properties and to design an effective control system, adequate

modeling is necessary.

MODELING OF ACTIVELY CONTROLLED ROTOR SYSTEMS
Modeling of Rotor Systems to be Controlled

Modeling the rotor system as a hybrid multibody system (HMBS) is a very
officlent method of describing it. This has proven especially useful when
active components are included. The HMBS model contains rigid bodies (e.g.,
bearing units) and elastic subsystems (e.g., rotors and blades), as determined
by special needs (see refs. 11 and 17). The coupling of subsystems 1s accom-
plished by special elements that are characterized by the respective force
laws. Modeling the system by this procedure permits the consideration of the
disk mass, the shaft mass, and the gyroscopic effects In a simple manner. It
also allows a modular construction of the system equations without any loss of
physical insight. The procedure leads to a computer-oriented representation
in which control concepts can be adequately considered. It has the advantages
of low system order, versatility, and simple system adaptation (e.g., altering
location of control forces acting on a flexible shaft). The equations of
motion of such HMBS are best set up on a computer. A very efficient method 1is



the direct evaluation of the principle of d'Alembert, which can be expressed
for a system consisting of k substructures as

kK

Z J (7 an - dfe)T8r1 -0 (10
b

where the index 1 1indicates the substructure, r 1is the position vector to
the mass element dm, ¥ 1is the acceleration vector of the mass element, and
dfe¢ s the force vector acting on the mass element. The symbol & {indicates
the variation of the position vector ry (no variation of the time t!).

Rotor systems normally consist of elastic shafts and rigid bodies such as bear-
ing housings or foundations. Taking into account the assumptions of a
Bernoulli beam (cross sections of an elastic shaft remain planar), we can inte-
grate over the mass elements in the radial direction and end up with a beam
element (disk element) as shown in figure 6. (In figure 6 three different
types of coordinate systems that are used In describing rotating machinery are
also indicated.) As a result of this integration, equation (10) becomes

k

> {f sri (dna® - of%); + s9; (4T% + & oI - dMe>1} -0 an
1=1 :

Here the first term describes the virtual work of translation (in parenthesis
is Newton's second law of motion), and the second term considers the virtual
work of rotation (in parenthesis, Euler's equation); §r is the vector of the
small virtual displacement, and 8¢ 1is the vector of the virtual rotation;

as is the vector of acceleration of the center of mass; w 1is the vector of
angular velocity; @ 1s the vector of angular acceleration of the beam element;
dI 1s the tensor of moment of inertia; and '

0 -, -wy
® = o, 0 0, (12>
wy W, 0

is the skew-symmetric tensor of the angular velocities given in the system of
coordinates (see fig. 6). Assuming rotational symmetry relative to the shaft
axis, dI for the disk element can be expressed as

Ix 0 0
dI = [0 Iy 0 a3
0 0 Iz
Iz ~dm 2 pw 4
where Ix = Iy =35 = 7§ d° = €3 d (z2)dz. The torque vector acting on the beam

element is represented by dMi. In the case of a rigid body, the integration
6



can be carried out over the entire body, and equation (11) would be expressed
in the same manner but the differential quantities would become m, I, f€,

and M€,

If we now introduce an f x 1 vector q of the generalized minimal coor-
dinates, where f 1is the number of degrees of freedom, the position vector
r and the vector of the angle of twist ¢ can each be expressed as a function

of q as follows:

r =r(g (14)
which leads to
ar
61 = 3q 50
and
? = o(q) (15
which leads to
. 2

Their time derivatives can be written

- _dr . ar
r = 3q q+ 3¢ (16
which Teads to
ar _ ar
aq dq
and
P=uw= gﬁfd + g{F (17)
which leads to
dw _ de

From the relations in equations (14) to (17), equation (11) can be expressed as

LT ’ T
'rz : (&) cdna® - dr® + (38) (1% + & a1% - MF -0 A1B)
8q 1 aq aq i

where 3r/3q = dr/aq is thefﬁétobian matrix of translation and Qd¢/3q =
3w/3q 1s the Jacoblan matrix )f rotation. The Jacobian matrices serve as dis-
tribution matrices and can be 'nterpreted as transformation matrices of the

B 7
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forces and the torques acting on the system in such a way that the forces and
torques are projected onto the directions of the generalized coordinates. We
will see the usefulness of these matrices later.

A description of the system as an HMBS demands the subdivision of the gen-
eralized minimal coordinates into two types of hybrid coordinates: those with
only time-dependent degrees of freedom (e.g., motion of the rigld bearing
units) and those with degrees of freedom that represent elastic deformations
(e.g., bending vibrations of the shafts). In the case of a shaft, the latter
type describes, by distributed coordinates, the motion of the beam element
shown in figure 6. These coordinates are a function of time t and the actual
location of the beam element covered by the coordinate 2z along the rotor
axis. To separate these two dependencies, we apply the Ritz product method

u'(2) 0 f,

r(z, b = [uz, b)), v(z,t)]T1 - KRG q € R 19)
0 v (2) i

The vectors u(z) and v(z) are admissible shape functions, with f; as the
number of shape functions considered in describing the deformation of the

shaft (ith substructure). These vectors can be looked on as expansions of

real deformations that are described by these functions. The closer these
functions are to the efgenfunctions of the real system, the better is the con-
vergence of the solution. (Note that the eigenfunctions change with the rotor
frequency.) Good results have been achieved by using eigenfunctions of the
nonrotating rotor, which allow a low system order even at high rotor frequen-
cles (depending on the gyroscopic influence). The determination of these func-
tions is carried out in a separate calculation, for example, by using cubic
spline functions, Hermite polynomials, or applying finite element or experimen-
tal methods. The number of elastic degrees of freedom fg that are chosen
depends on the efgenfrequencies of the system itself and %he expected excita-
tion frequencies. The equation of motion of the separate modules (substruc-
tures) can be given in the usual form of mechanical systems

["X)(z 0} q. [DXX EGXXJ q [KXX E"XX:’ q h (20
______ g L. R P . h
! -G, ! TR SN B
O Myl T I GyniPyyl, Myxi Kyl

The coordinates that are necessary for the description of the separate modules
are included in the vector of generalized coordinates gqj. The force vector

L
T T
h, = ;Io 3jF,8¢z - 2,)dz = ;J zpf, 2n

is the sum of all forces acting on the 1th substructure. The forces are not
only imposed from outside the system, but they can also be caused by coupling
effects between the subsystems. The submatrices appearing in equation (20)

are displayed in table I for an axisymmetric shaft [u(z) = v(2)], which holds

true with very few exceptions.



TABLE I. - SUBMATRICES OF ELASTIC SUBSTRUCTURES WITH RESPECT TO INERTIAL SYSTEM

Submatricies Influence
L
T ’ T ]
(M ). = (M ), = J plA(Z)u(z)u (2) + I (z)u'(2)v’ (z)1dz Inertia
xx 1 yy i X
0 .
1
L
(D ), =(D ), = d. EI (z)u"(z)u"T(z)dz Material damping
xx 1 yy i i X
Jo .
/"I
7
s L
(6 ), = (6 ). =<2q ol (z)u'(z)u'T(z)dz Gyroscopic effects
xy 1 yx 1 X
/' |
1
L
(K ), = (K ). = £l (z)u"(z)u“T(z)dz Elastic forces
xx' i yy i ] X
0 :
i
R )
(N ), = (N ), = [26p1 (z)u'(z)u'T(z) + Od EI (z)u‘(z)u“T(z)]dz Spin and
xy i yx i X i x .
Jg . internal damping
i

With equations (16) and (17), the Jacobian matrix in equation (21) can be
expressed

s ke (22)
3 aq
where
rj = [u(q.zj), v(q.zj)]T
From equation (19), we obtain
uT(zJ) 0
J(zj) - I 23
0 v (2,)
3
The vector of generalized coordinates of the overall system is
” T
T T T
q - [q],qz, .. .,qk] (24)

where q € Rf, £ 1{s the number of degrees of freedom of the overall system,
and k is the number of substructures (flexible and rigid parts). The



Jacobian matrices for the overall system relative to subsystem 1 can be writ-
ten as

3, - [°1§°z§' . .§J1§. . .gok] (25)

The structure of these Jacobian matrices is very simple; J. contains only
zero matrices, with one exception: Jjy, which relates to thé actual subsystem

(ref. 11).

By formulating the system in such a way, the substructures can be combined
systematically to synthesize the overall system. The Jacobian matrices serve
to connect the elements. In other words, they distribute the actions of the
interconnected subsystems in the matrices and thus describe the overall sys-
tem. The set of equations for the whole system exhibits the structure of ordi-

nary mechanical system equations

MG + (D + Gq + (K+ Ng=h q € Rf (26)

By Introducing the state space vector
T. T
x(t) = [q ,QT] (26a)

where x € RM and n = 2f, equation (26) becomes
X = AXx + Bu (26b)

where A€ R™" and BE€ R"'T. £ 1{s the number of degrees of freedom; r, the
number of actuators; and u, the control vector.

Using this method to model systems consisting of rigid and elastic subsys-
tems has proven to be very suitable, especially when considering active ele-
ments. The advantage of this method, compared to others, is the Tow system
order resulting from always using a Ritz approximation, which takes the mode
shapes of the nonrotating rotor as admissible shape functions. Using these
functions for the Ritz series provided very fast convergence, even at high
rotor frequencies. For this reason the calculation expense is always low,

even for very complicated rotor structures.

Modeling of the Complete System

To design a control system, it 1s necessary to include the actuators in
the system model. The differential equation must be represented in such a
form that the right side of the equation contains only terms that are influ-
enced by the controller (disturbance forces can always be added easily).

The differential equation, especially the resulting changes in the system
matrices, must be tallored to the electromagnetic actuators acting both
directly on the rotor and via the bearing housings, and also to the actlive

chamber system.
10



Inclusion of electromagnetic actuators. - We start with the following
differentlal equation:

Md(t) + Pq(t) + Qq(t) = Ijhi(q,q,q,Q,T,1) (26)

where Q 1is the rotor frequency, T 1is the oil temperature when using journal
bearings, and t indicates the time. By using electromagnetic actuators to
apply forces directly on the rotor,

h, = IL WE. . s(z - z0dz = Az OF 27
17, R 392 = R2PF

where Jg 1s the Jacobian matrix of translation for the subsystem flexible
rotor; f4 1s the discrete force vector (here control force) acting on the
rotor at the location z3; and &§(z - z3) 1s the Dirac function that permits
the consideration of the discrete locat?on of 23 (screening characteristic of

the Dirac function).

Alternatively, we can apply forces that act indirectly (via the rigid
bearing housings) on the rotor

hB = JBfB (28)

where Jg 1is the Jacobian matrix of the subsystem rigid bearing element and
fg s the force vector acting on this bearing element. Combining equations
(1) and (28), we can formulate

F k1 0 1x

X k 0] [x
al |- J;{ ] [ ] . dg - KIL3Ga + K, 31 29
Fy o «lly 0o Ky |y

In this formulation we took advantage of equations (14) and (16) to express
the x-, y-movement of the bearing by using the vector q of the generalized
coordinates and the Jacobian matrix of translation belonging to the subsystem

bearing element, which is expressed as
ro = [x,y1] = 3.q (30)
B *7°B B

When a magnetic bearing acting directly on the rotor is applied at location
zy, equation (30) becomes

ry - [u(zj,t),v(zj,t)]T - Iz (3N

The equation of the complete system can be achieved by integrating the force
equation (29) into the differentfal equation (26a)

MG + PCQ)G + [Q(Q) - k3TJ1q = Bu (32)
B

11



where B = kgk?J? is the control matrix with kQ as the gain coefficient of
the power amplifier, and u 1is the control vector containing the input

voltages to the power amplifier. The negative sign of the term ngJB
indicates the negative stiffness produced by the magnetic actuator.

Inclusion of active chamber system. - The active chamber system (hydraulic
actuator) is described by the force equation (8). HWe introduce the
abbreviation

f = fV - mxB - de - CBXB (33)

and use the equation of the servo valve described by

mva + dva + cva - vav (9
as already given. The system order increases by one degree of freedom for
each servo valve, so the vector of generalized coordinates, q, has to be
enlarged by the two additional coordinates, fyy and fyy (for the servo
valves serving the x- and y-directions respectively):
34

a = [qT, fyyx, fyyl

The resulting differential equation, 1n conjunction with equations (31), (33,
and (9), can be expressed as

M p @ o o
0 m, ojq + |0 dv 0lq + |0 Cy 0lq
0 0 v 0 dv _O 0 Cy
_T(fo -MXg -dxg -CpXg - Uy
= Jg L - + b,J, (35)
.ny -myg -dyg -Cp¥p va

The coefficients m, d, and cg describe the additional mass, damping, and
stiffness effects caused by the actuator system; 38 ¥s the enlarged Jacobian

matrix of translation for the subsystem bearing, and jv is the Jacobian

matrix belonging to the subsystem servo valve. Those terms of equation (36)
that are multiplied by JB are linearly dependent on the system coordinates

and thus contribute to the homogeneous terms of the differential equations
(dynamic behavior of the complete system).

The radial movement of the bearing, described by xg and yg, and the
servo valve dynamics, described by coordinates fyy and fyy, can be expressed
by the enlarged Jacobian matrices of the subsystem (ref. 11)

12



= 386 (36)
I8
and
fo _
] = 3,9 (37)
Vy

The final formulation of the differential equation of the complete system can
be given as

[+ 337G + [P+ T5353] + [T+ Tq3geq - T3, )a = B (38)

or

~

Mg + PG + Qg = Bu (38)

One can see that the coupling of the mechanical system, the fluid system, and
the electrical system can be managed very elegantly. The Jacobian matrices
that are involved serve as the "distribution-matrices." They distribute the

interaction of the involved subsystem.

The input by the actuator is characterized by the term Bu where B 1is
the control matrix, which depends to a high degree on the actuator locattions
chosen, and u 1is the r x 1 control vector with r as the number of actua-

tors involved.

If we use a linear combination of all imaginable measurements (displace-
ments gq, velocities g, accelerations g, and integrated displacements qp),
the control vector can be expressed as

.
U= -Kc[a},aT,aT,aT] - -KCK (39a)

or
u = -[KlikpixoixA]Ci (39b)

where Ki s the gain matrix relative to qp = fqdt; Kp is the gain matrix

with respect to the displacement vector; Kp 1is the gain with relation to the
velocities; Ky s the feedback matrix taking into account the accelerations;
and C {s the measurement matrix, which takes into account that often not all
displacements with their time derivatives and integrals are known. The rela-

tion between an enlarged vector
- T -T =T = T
%= [a.3.4 4] (40

and the measurement vector y can be given as
13



y = Cx (41
With equation (39a), equation (38b) can be formulated as

(M + BKAC)E + (P + onc>6 + (Q + BK,O)q + BK/Cqy = O (42)

For several reasons it 1s more convenient to transform equation (42) into the
state space representation. By introducing a state space vector

X = [a},aT,&T}T (43)

(where x 1is different from the normally used state space vector because it
has been enlarged by the vector qi, which contains the integrated displacement

coordinates) equation (42) becomes

0 0 i € E 0 %
q| = ___9____§ ______ 0 . E______g _______ q (44)
G| ek Ci-m P+ B0 M@ B0 [
or
X = Ax | (45)

Equation (42) shows that the mass matrix My 13 a function of the acceleration
feedback characterized by Ka: : '

M, = M+ BK, C (46)

A
In the case of acceleration feedback - this depends on the software available -
using the second order equation (42) for optimization of the controller can be
advantageous because of the controller-dependent mass matrix

My = Ma(Kp) (47)

Discussion of Several Cases

Proportional derivative (PD) controller. - In this case, where Kp # O,
Kp » 0, Ko = 0, and K[ = 0, My Is constant; however, because Ky = 0 (no
integral term), the systém can be reduced to the usual form (the fr x 1 vec-
tor qp 1in the state space vector Xx can be canceled). This means the
upper fy rows and the f1 columns at the left side of the system matrix A

can be canceled.

Proportional derivative-acceleration (PDA) controller. - Here, Kp = 0,

# 0, 20, and K] = 0. The reduced order system (PD controller) is
sti1l valid here, but the mass matrix is a function of the acceleration feed-

back [My = M(Kp)1.
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Proportional integral derivative-acceleration (PIDA) controller. - In
this case, all submatrices appearing in K (see eq. (39)) are nonzero. And
for calculation (optimization and simulation), the enlarged system described
by the differential equation (45) - full order system - has to be taken into

account.

From the complete description of the system, the design of suitable con-
trol concepts can be achieved. The effectiveness of the controller, in connec-
tion with the actuators and sensors used, depends to a high degree on the
controllability and observability conditions of the system. These system prop-
erties will be discussed in the following section.

CONTROLLABILITY, OBSERVABILITY AND SPILLOVER
Controllability and Observability

Controllability and observability are two of the most important factors
in the theory of dynamic systems. They play a very important role when design-
ing a control system and give an insight into the physical problem. Simply
put, controllability means the ability to adequately control the dynamic behav-
for of the system through the actuators used. Observability means that appro-
priate sensors exist at appropriate ‘locations such that the pertinent dynamic
behavior can be detected. The controllability and the observability of the
system are mainly determined by the chosen actuators and sensors and their
locations. Controllability and observability can change as a function of
rotor speed, stiffness and damping of the bearings, ofl temperature of the
Fluid film (In the case of journal bearings), and so on. Much software 1s
available to check on these system properties. For time-invariant mechanical
systems, the Hautus and the Kalman criteria are generally used (see refs. 17

and 18).

The controllability and/or observability can be studied via the mode
shapes (elgenvectors) of the system. This can be explained on a simple system
whose mechanical model is shown in figure 7. When one uses control forces,
the controllability is indicated by the amplitudes of the various mode shapes
at the actuator location. This means the larger the amplitude, the higher the
controllability. For illustration, the mode shapes up to the fourth order are
displayed in figure 8 for the system shown in figure 7 for two different rotor
frequencies (2 = 0 and Q = 100 Hz). Only one set of modes appears when
Q= 0 (Fig. 8(b): symmetrical system, decoupling in x- and y-direction).
The modes split at rotor frequencies Q = 0 into forward and backward modes

(figs. 8¢c) and () respectively).

By applying forces that act directly on the rotor (with a magnetic bear-
ing), all natural mode shapes of the rotor could be influenced sufficiently if
the forces acted at locations where the amplitudes of the modes have their max-
{mum value. Unfortunately, this maximum occurs at different places for differ-
ent modes, and the modes can also be influenced by the rotor frequency (compare
the forward and backward modes at Q = 100 Hz, gyro influence). The optimal
actuator location depends on one's objectives, and it will always be a

compromise.

Now consider the rotor to be supported by roller or journal bearings.
The vibration behavior is to be improved by control forces via bearing housings

15



(indirectly acting on the rotor). In this case the effectiveness, that is,
the controllability, is characterized to a large extent by the stiffness of
the bearings and also by the bearing support stiffness.

For some idea of these influences see figure 9; it shows a measure of the
controllability for the first and the third forward modes of the system in fig-
ure 7. As a measure of controllability, one can use the square or any other
suitable norm of the bearing displacement at the actuator location. In each
case the controllability is plotted as a function of the bearing stiffness
ck and the bearing support stiffness cy relative to the stiffness cy of
the rotor ttself. In figure 9(a) the controilability can be seen to decrease
with reduced cg. Physically, this result is very understandable; the lower
the stiffness between bearing and shaft, the smaller the effectiveness of con-
trol forces acting via the bearings. The behavior with respect to the outer
bearing support stiffness is the opposite. Although not shown, these results
are similar for the second forward mode but are not valid in general. The con-
trollability of the third forward natural mode (bearing displacement) is plot-
ted in figure 9(b). This behavior is different from the preceding one because
of increasing influence of inertia with rising frequency of oscillation.

For the example under consideration, good controllability of the important
natural mode shapes (up to the third order) in the current frequency range is
guaranteed if the stiffnesses satisfy the conditions

ap oo
ilﬂ-‘

and <1 (48)

n' (e
x X
v

Investigations of the observability are similar, and for the system under con-
sideration the results are identical.

Spillover

If elastic components are involved in the system, an exact system descrip-
tion requires an infinite number of shape functions. In practice, only a B
finite number of modes can be considered, and in fact, only a few are needed
for adequate control. The consequences of this incomplete system description

are spillover effects.

Spillover effects can appear on two different levels. On the one level,
the measurements contain both the modes considered in the model and also the
modes that have been disregarded. Both sets of modes influence the signals at
the measurement locations; this leads to observation spillover. On the other
level, control forces may destabilize modes of higher order that have not been
accounted for in the control design, thereby leading to control spillover.
Usually, internal damping is assumed to be large enough to prevent instabili-
ties due to spillover effects. Because this is not true in every case, it is
prudent to consider these effects in the control design. Theoretical investi-

gations lead to the collocation condition (refs. 5 and 20)
Ba=cT (49)

where B s the control matrix (eq. €26 b)) and € 1{s the measurement matrix
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(eq. (41)). The condition given by equation (49) requires that actuators and
sensors be located at the same place. It also requires only velocity feedback;
the number of signals involved in the feedback must be equal to the number of

actuators used.

For economic reasons, using more signals than actuators in order to
receive as much information as possible about the system seems quite reasona-
ble. In fact, an improvement of the dynamic behavior is often possible if we
use more sensors than actuators. To avoid instabilities, the neglected mode
shapes in the system description must be neither observable nor controllable.
These requirements lead to a practical criterion for the cholce of the actua-
tor and sensor locations, which is expressed by the following equations:

L |v,(zg)| » min o (50)
i

and
%:[vi(zA)l +min - 1 >n (51)

where zg s the position of the sensors, zj, the actuator location, and np,
the number of shape functions considered in the system description. Reference
5 provides hints on managing the simulation of such a system.

Minimal spillover can be expected if at the actuator locations the ampli-
tudes of the higher modes tend to zero. Often, suitable positions may be
found directly by evaluating the eigenfunctions (fig. 10). For systems with
large mass concentrations, the high-order natural vibrations have almost no
corresponding rigid body motions. Only the low-order relevant vibrations con-
tain significant rigid body movements in addition to elastic deformations.
Therefore, we recommend placing the actuators and sensors at the points of
mass concentration where, in practice, the higher order eigenfunctions have
none or only small displacements. When we take a closer look at the mode shape
with a frequency of 2100 Hz (fig. 10), we can see that to avold spillover, the
sensor should pick up the bearing movement and not the movement of the rotor

at the bearing location.

Spillover effects may also be due to sensor locations and actuator loca-
tions not being the same. For example, two rotor modes are fllustrated in fig-
ure 10. For the first mode, the rotor moves in the same direction at both the
sensor location and the actuator location. For the second mode, the rotor
moves in opposite directions at the two locations. This means that, for first
mode motion, a positive x-displacement at the sensor requires a negative
x-force at the actuator to counteract it. However, for the second mode, a pos-
itive x~displacement requires a positive x-force to counteract it. That is,
the relation between sensor motion and required actuator force is opposite for
the two modes. If the controller gain is assumed constant at all frequencies,
and the controller is programmed to suppress first-mode vibration, then the
second mode will be unstable. This occurs because the actuator response is to
increase the second mode motion rather than to suppress it.

Spillover can also be shown analytically as follows. Consider the case
when velocities Xxg and ys are taken at location 2zg with the gains
ky = ky = k and without coupling between the x- and y-directions. Then for
contro¥ forces generated by a magnetic bearing Tocated at plane M, we obtain
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fo kx 0 1(x q,

- - - - kdzo) | (52)

s
My 0 Ryl Ay
For a demonstration of spillover effects, only two modes will be considered
(that is, two in each direction); see equation (19). The number of degrees of
freedom f 1is 4. The vectors of the admissible shape functions become (com-

pare with fig. 11)

vz
u] sin 0
u(z) = v(z) = = 2wz (53
U, sin T

The sine functions in the sample considered are the eigenfunctions of the non-
rotating rotor. For inclusion of the force vector fy <(eq. (21)) in the dif-
ferential equations given by equation (20), the force vector can be expressed

a,
h = k3T (2032 (54)
M I¢2g) 1.
9y

With equation (53}, the Jacobian matrices appearing in eduation (54) can be
given explicitly as

0 0

and 3 (55)
0 0 uyy Uy U S

If we take 2z = L/4 and zg = (3/4)L, we obtain uM) = us) = VY2/2 =
a>0and uyp = -ug2 = 1 =b > 0. The spiliover effects can be explained ana-
Iytically if we set the rotor frequency Q = 0. In this case, equation (20)
is decoupled in the x- and y-directions (see table I). Assuming the runner
consists of a thin disk with mass m and radius r, the thickness b of the
disk 1s much less than the length L of the shaft, and the shaft is massless,
then equation (20) can be written in the x-direction as

m 2.2 + Kk + = 0 (56)
rrtla 2{1.
0 Lz q, ab -b q, 0 L

Note that equation (56) represents only half of the system. The other half
(in the y-direction) is the same because of rotational symmetry.

The stability of the system can be verified by the characteristic equation
relative to equation (56)

am? + kala - mkpd3 . (cpm + c]A>x2 . <c2ka2 - c]kbz)k +CyCy = 0 (57)
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where A = 2w2rim/L2. By the Stodola criterion (ref. 18), the system is unsta-
ble if the coefficient of X and/or A3 is less than zero. The coefficent
of X\ s

aj] = k(a2cy - b2cy) (58a)

and the coefficent of A3 s
a3 = k(a2A - mb?) (58b)

From table I and equation 53, we obtain

L
¢, = (%)451[ sin? T2 dz = (f)451(§) (59a)
0
and
s ot 4
¢, = 16(7D) EIJ stn? &2 4z . 15({) EI(%) (59b)
0

Combining equations (59a) and (5%b), we obtain
co = 16c) > 0 (60)

Since b2 = 2a2 > 0, it follows that if k > 0
ay > 0 (61)

As a result of equation (61), we know, for positive k, that the system can
only be unstable if a3 < 0. If L/r > w, this condition is fulfilied and the
system becomes unstable. (If k <O, then aj < 0 and the system fs unstable

for any value of L/r.)

CONTROL CONCEPTS AND CONTROLLER OPTIMIZATION

The design of linear and nonlinear controllers, both amalog and digital,
has been treated in great detail in the literature. There are numerous methods
and concepts for the design and realization of controllers. The cholce of a
concept is determined mainly by the aim and the physical realities of the plant
(i.e., the open loop). In the following, only a time invariant and linear sys-

tem is assumed:
x(t) = A(Q,Q,t, T)x(t) + Bu(t) A €RWM and B € RMT

and
y(t) = Cx(t) C € RMN (62)

Here, A 1is the system matrix; B, the control matrix (dependent on the actua-
tor locations and actuator type); C, the measurement matrix (dependent on the
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measurement Jocations and the type of sensors used); n = 2f, the system order,
where f 1is the number of degrees of freedom; r, the number of independent
forces generated by the actuators; m, the number of signals used to realize
the feedback (measurement coordinates); Q, the rotor frequency; Q, its time
derivative; and T, the oll temperature.

Depending on the information used, two concepts may be distinguished:
state feedback

u(t) = Kg(Q,Tix(t) Ks € R"»N (63)

and output feedback
ult) = Ko(Q,Dymq(t) Ko € RT.M (64)

This means that the control vector u s a linear function of either the sys-
tem state vector x(t) or of the system output, that is, the measurement vec-
tor ym(t), which is directly available from the system sensors.

State Feedback Control

In designing a state feedback controller, the following methods are gener-
ally used:

(1) Optimization according to the quadratic integral criterion (or per-
formance index):

@™

J = I (xTQx + uTRu)dt + min (65)
0

This criterfon takes into account all coordinates for describing the sys-
tem represented by x and for the system output given by u as well. By
using this approach, the design problem is reduced to the task of solving the
algebraic Riccati equation (ref. 11). The weak point in this procedure is the

adaption of the weighting matrices Q and R for the specific problem.

(2) Choice of the elgenvalues Ay of the closed control loop (pole
assignment):

(\E-(A-BKIG=0 (66)

In contrast to the previous method, the choice of suitable eigenvalues
(poles) 1s the problem with this approach. With the selection of eigenvalues,
a specific system behavior is enforced, so in the case of poorly adapted val-
ues, extremely high control forces may appear. The influence of gyroscopic
effects may even worsen the system dynamics. Hints on choosing suitable poles

are given in reference 217.

(3) Modal state control

~ This method aliows for a shift of one or more eigenvalues. This can be
especially useful for rotor systems that, for whatever reasons, are run in the
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vicinity of resonances. MWith the control concept given in the following, how-
ever, one can only shift as many poles as there are actuators (refs. 5 and 21).
In the control design state, the system (eq. (62)) is transformed into

K(H) = AXC(E) + T-1Bu(t) = [A - KyIx(t) (67)

The matrix A 1is real and has a diagonal biock structure (ref. 11). The gain
matrix Kg appearing in equation (63), which i1s needed to realize results, is

given by
Kg = B+TKyT-] (68)

with
B+ = (BTB)-18T (69)

being the pseudoinverse of the column regular control matrix B from
equation (62). '

(4) Combined state feedback control

This kind of control is useful in cases where the application of a con-
troller that was designed according to method (1) or (2) does not yleld suffi-
cient damping of some natural vibrations. Here the additional application of
a modal feedback control according to method (3) can improve the system behav-
for significantly. The additional effort for this case is negligible since a
summation of gain matrices affects only the gain coefficients, whereas the
structure of the controller remains the same.

Output Feedback Control

With a limited number of measurements, the possible influence on system
behavior is restricted. However, the obtainable results are still sufficient
for most applications. Significant improvement by means of state feedback
often requires a large number of sensors, which in most cases 1s not practical.

The design of an output feedback control always implies a parameter opti-
mization, that !s, an optimal tuning of the coefficients of the feedback matrix
in equation (64). If we design an output feedback with the quadratic quality
criterion, the quality functional can be acquired by solving the Ljapunov
matrix equation. Utilizing all symmetry characteristics reduces the number of
variable parameters significantly, thereby decreasing the calculation expense

as well.

It is important to note that in contrast to the Riccati controller, dif-
ferent initial conditions x(ty) = Xy will result in different optimal con-
trol matrices Kg. The 1n1t1a? cond?t!ons may be set explicitly in such a way
as to enforce consideration of some critical natural mode shapes (e.g., by
equating xo to a specific eigenvector characterizing a natural mode shape).

Under certain circumstances (i.e., when fully observable and controlla-
ble) the output feedback control allows for shifting of specific eigenvalues
as well. If the modal description of the system is as in equation (67), the
feedback matrix Ko 1in equation (64) becomes
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Ko = B+TKyT-1C* (70

with
ct = cleeeh-! (71)

being the pseudoinverse of the row regular measurement matrix C in equation
(62). In general, the matrix C 1is not square so it cannot be inverted; thus
the pseudoinverse indicated in equation (71) must be used. This means that
the other poles are shifted as well, and a check on the stability and system
behavior after the shift of the poles 1s required (refs. 21 and 22).

EXAMPLES AND RESULTS

Knowing how to construct a controller and which type of controller to
chose depends to a high degree on one's objectives. In this section, several
examples will be given to demonstrate the design procedures.

Magnetic Suspension of an Epitaxy Centrifuge

The information in this section is taken from reference 1. The rotor
system was developed for application in liquid-phase epitaxial growth of very
thin semiconductor layers. In order to obtain layers of high quality, a very
smooth rotation is required in a reactor that is leakproof even under ultra-
high-vacuum conditions. An active suspension of the rotor was necessary in
order to absolutely exclude contamination by Tubricants or by wear.

The resulting epitaxy centrifuge, supported without contact, is shown in
figure 12. The upper part of the apparatus contains the rotating cruicible
where the epitaxial layers grow. The crucible can be heated up to 1000 K by a
furnace. The supporting unit is concentrated in the lower framework. The
rotor spins without contact in the vacuum tube. The bearings, the attitude
sensors, and the stator of the electric drive have to be outside the tube to
prevent contamination. Bearing forces, attitude signals, and driving torque
are transmitted through the walls of the tube. Two emergency bearings prevent
damage of the rotor in case of a magnetic bearing fallure.

Equations of motion and state. - The mechanical model that is the basis
of the system described is shown in figure 13. The elongated rotor is assumed
to be rigid. Asymmetries of the rotor are restricted to small dynamic and
static unbalances only. The driving torque acts about the rotor axis. The
radial bearings exert discrete horizontal control forces; the axial bearing
force acts along the rotor axis. The axial bearing's vertical force component
compensates for the rotor weight m.g;, its horizontal components act 1ike an
elastic restoring force. The deviation of the rotor from its vertical refer-
ence position is described by the given vector r(t) and the small inclina-
ticn angles o« and B, as indicated in figure 13. Linearization of the
equations of motion 1s justifiable. As a consequence, the horizontal motion

is decoupled from the vertical motion.

Because the rotor is assumed to be rigid, the four degrees of freedom of
the radial motions can be described by the four coordinates x and y
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(translational) and « and B (rotational). The vector of generalized coordi-
nates for describing the dynamic behavior of the rotor can be taken as

q=[x.8,y,-all (72)

where x and y are radial displacements of the rotor at point S shown in
figure 13. The negative sign of the angle « can be explained by the dis-
placements in the y-direction that are caused as a result of angular movement
«. These displacements at the locations zj = Ly or 2zp = Lo are positive
if a 1is negative.

From equation (19) we obtain the vector of the admissible shape function,
w(z) = v(z) = [1,217 (73)

or the displacement vector as a function of the coordinate z along the rotor
axis,

r(z,t) = [g - g;? - g][x,B,y,-a]T (74)

or in connection with equation (14),

§£ .
r(z,t) = 3q q= JTq (7%

with Jr as the Jacobian matrix of translation. The Jacobian matrix of rota-
tion appearing in equation (18) can be expressed

3 da da  _da

3 T ax g 9y 3(-a)
8a 2 oh B 98 _9f
ax o dy d(-a)

=J (76)
R

Radial forces acting on the rotor. - These are forces generated by the
active elements and the weight of the rotor at the locations z = Ly,S.Lo. LA
(fig. 13). The force vector of equation (21) can be given as

T T T T
h = JT(Lu)fMu + JT(LO)fMo + JT(LA)fA + Jth amn

and fMu and fMo are given by the magnetic bearing equation

fx kSx 0 1[x k1 0 1X

£, = - +
Mu. o f, 0 ky|l¥ 0 K[y
u,o u,o u,o (78)

or
fJ = ksJT(zj)q + ki‘j
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The radial component of the axial magnetic bearing can be considered as a
restoring force

= -k = —kaT(aA)q (79>

with kg as a bearing constant.

Eventually, the torque t. produced by the couple of forces consisting of
weight G and the axial force Fpz for compensating the weight can be given

as
a(LA -s)
t. = -mg = -mg{L, - s)J,q (80)
¢ BCL, - 8 A R
Combining equation (78) with equation (80), we obtain

T T T T
h = [(JT(LU)JT(LU) . JT(LO)JT(LO>kS -k I7(L)3(L,) - mglL, - s)JRJR]q + By

(8N
where
u = Lixo,ixy»Tyo.tyul’ (82)
ts the control vector built up by the control currents in the given order.
With regard to equation (78), the control matrix B has to be
B 0 ) .
B = B = ki ' (83)
0 B 4% Ay
The matrices of the system
MG + PG + Kq = Bu (84)

can be calculated from table I and the vector of the admissible
shape functions (eq. (73)) as follows:

[m ms 0 0 [0 0 0 0]

ms A+ mse 0 0 0o 0 0 I
M= P =

0 0 m ms 0 0 0 ©0

o 0 ms A+ ms?) 0 -1, 0 0]
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: e Lk N Lo)ksy_
k1x k1x 0 0 -*xo-
Bu = Lokix Luk1x 0 0 1xu
‘ ‘ , (85)
0 0 iy 1y yo
0 0 Lok1y Luk1yj -1YU.
Introducing the state vector x = [qT,dT]T, we obtain the state equation
) 0 E 0
X = Ax + Bu A= 1 ) and B=| - (86)
-M'K -M'P M B

The essential values of the design parameters of the centrifuge are given in
table II.

TABLE II. - DESIGN PARAMETERS OF CENTRIFUGE

Coordinates, m ‘
Lo « v v e e e e e e e e e e 0.314
Ly o« v v e e e e e e e e e 0.126
A T P 0.458
LA = v v v e e e e e e e e e 0.448
Moments of inertia, kgm2
Transverse, Iy . . . . . . . .. .. 0.060
Polar, I, . .7, . . .« v o o o o 0.00421
Mass, m, kg . . . . . . o o e 0.458
Magnetic bearing coefficients,
ki, NJAL oo oo s 13.0
kg, N/m . o oo 6150
Kmo NM/Mm o 0 0o s e 0.1
Gatn of power amplifiers, kq, A/V . . . 0.25

If we measure all coordinates represented by the vector q and differen-
tiate all the signals, we know therwhole state vector x. In this case, the
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system is fully controllable and observable. Using a Riccati controller to
optimize the controller with regard to the integral criterion given by equa-
tion (66), we obtain the damping represented by the real parts of the eigen-

values of the system shown in figure 14.

The weighting matrices for the results displayed by the dashed lines were
chosen as

0 0 u

For these results the rotor frequency chosen to design the controller was

Q = 150 Hz. Figure 14 shows that the rotor is unstable up to a rotor fre-
quency of 30 Hz, since there is negative damping associated with one of the
eigenvalues below this frequency. To avold instability, we can use an adapt-
ive controller. This means that the controller always has to be adapted to the
actual rotor frequency. The attainable results are displayed in figure 14 by

the solid lines.

Q 0
Q- [ u ] Q, = q,f £erbd Qg - 2.5x10’ (87)

Control of an Elastic Rotor

A rotor consisting of an elastic shaft with a rigid body at the top sup-
ported by ball bearings was investigated (fig. 15). The shaft diameter varies
with axfal coordinate z; the cross section of the shaft is constant by sec-
tors. To improve the dynamic behavior of the rotor system, a magnetic bearing

was used (fig. 15).
The essential values of most design parameters are given in table III.
TABLE III. - DESIGN PARAMETERS OF ELASTIC

ROTOR SYSTEM
[See fig. 14.]

Coordinates, m

Lo « o e e e e 0.0425
Ly o e e e e e e e 0.2565
p o 0.5

0.065

--------------

Moment of inertia of rigid body at end, kgm
Transverse, Ipy . . . . . . . . .. 0.

Polar, IRz -+ « v v v v v v o e 0.131
Mass of rigid body, mg, kg . - . . . . 14.42
Bearing stiffness, N/m

CU v o e e e 2.0x107

Co « o v e e e e e 1.0x108
Young's modulus, E, N/mE ... L. 2. O6x10]1
Mass density, p, kg/m3 . . . . . .. 7.85x103

The equation of motion can be achieved by using the theory given in the
section Modeling of Actively Controlled Rotor Systems.
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In the first step, the mode shape functions have to be determined. The
determination of these functions is carried out separately; for example, by
use of cubic spline functions, Hermite polynomials, finite elements, or experi-
ments. The results of this determination are shown in figures 16 and 17. Fig-
ure 16 displays the eigenfrequencies with respect to rotor speed, up to the
fourth order. Note that all the curves split into one forward and one back-

ward vibration mode.

Because only the forward vibration modes can be excited by imbalances (in
most cases, the dominant excitation in rotating machinery), these modes must
be considered relative to the rotor speed. For this reason, the runup line
(w = Q) 1s plotted in figure 16. Each intersection between the runup line and
a curve of the forward eigenfrequency signifies a critical speed of the rotor.
In the plot shown, two critical speeds can be recognized: w) = 12 Hz and
wp = 330 Hz. In order to see the effect of the chosen actuator or sensor loca-
tion on the controllability and observability of the system, the mode shapes,
up to the third order for three different rotor frequencies (Q = 0, 150, and
300 Hz, are plotted in figure 17. The actuator location is marked by M. The
mode shapes and thetr frequencies are obviously functions of the rotor speed
(gyroscopic influence). A close look shows that the controllability of the
third forward and the third backward modes at Q = 150 Hz and the third back-
ward mode at Q = 300 Hz is tending to zero; this is evidenced by the small
amplitude at location M. If these modes are to be influenced effectively,
the actuator location must be changed. The resuits attainable by state and
output feedback control will be discussed in the following section.

State feedback control (Riccati controller). - The control design fis
based on the quadratic integral criterion shown in equation (65):

J -3 j: (xTox . uTRu)dt > min (88)

This leads to

1.7
Jopt =35 X, Px

o
where P is the solution of the algebraic Riccati equation
ATP + PA - PBR-IBTP + Q= 0 (89)

which, in connection with the criterion of equation (88), always supplies an
optimal controller (gain matrix K)

g = -Kx K = R-1BTP (90)

A significant amount of software is already available to solve the algebraic
Riccatl equation.

With the vector of generalized coordinates
T
T
y- [’I»Yv] 91)

27



and the state vector
x = [yT,y"] (92)

the weighting matrices are chosen as

0 0 O 0
0O 0 O 0

Q= 0 o Qu 0 and R = E (93)
o 0 0 Q

v
Only the velocities are taken into account. If we take
Qy = Qy = diag{1.4x107, 9x106, 6x106} (94)

we obtain, for a rotor frequency of 150 Hz, the gain matrix

[ _0.43x10°  -o.sx10% ]

-0.35x10° 0.29x108 K, Ky
0.40x10° 0.27x108
0.81x10%  -0.43x10%
20.29x10%  -0.35x10° Ky K

.| -0.2ma0° 0.40x105

"SI PR N (95)

0.28x10% 0.43x103
0.33x10* 0.28x103 ks Ky
0.84x103  -0.93x10?
~0.42x10° 0.28x10%
-0.28x10° 0.33x10* &, kg
0.93x102 0.84x103 | | J

Because the rotor is symmetric, the gain matrix can be represented

k. -k, k. -k
K = [ ! 305 7} (96)
ky Ky k;  Kkg

It is striking that the gain matrix applies not only to -(kg), but also to
artifictal gyroscopic (ky) and restraint (ky) forces as well as to nonconserva-
tive forces (k3). The damping equivalents with respect to rotor frequency are

plotted in figure 18.

In this figure one damping curve (dashed 1ine) 1s negative (the corre-
sponding vibration mode is unstable!). This is caused by spillover effects.
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To design the controller, only three mode shapes have to be taken into account;
however for the model to simulate the system equations, four mode shapes were
considered. Note that the design criterion guarantees asymptotic stability
only for the model that was the basis for designing the controller. Figure 18
also shows that one of the damping curves approaches zero near Q = 350 Hz.
This lack of damping is due to the controllability condition of this mode

shape at this rotor frequency (fig. 17). We may conclude that the state feed-
back controller as designed is useless. A reasonable state controller would

be much more expensive, so an output feedback controller will be discussed as

an alternative.

Output feedback control. - In contrast to the optimization procedure of
the Riccati controller leading to an optimal controller, the structure of the
output controller will be fixed at the outset. For the feedback, only directly
measured state coordinates are expressed by equation (62). By taking into
account this measuring equation, the control vector can be written

~T

C 0 |ly
u=-Ky =-KCx = -(K1K2) ~Tll. 97
0 Clly

As a criterion for design of the controller, the quadratic integral criterion
will be used:

-]

] T
J-3 Jo x1Qx dt » min (98)

which leads to

—r

T
J =3 xon

opt 0

where P is a solution of ATP + PA-Q=0 with A= (A - BKC).

The optimization can be carried out with a presupposed starting matrix

only if the system is asymptotically stable. Now, by solving the Ljapunov
equation (eq. (98)) and varying the gain coefficient appearing in K, the value
of the criterion can be minimized. One weak point in this procedure is that
an initial state vector xo 1s necessary. On the other hand, the procedure
can be used for a higher valuation of a special mode shape (here, e.g., the
first forward mode). This means that for X, the elgenvector (mode shape)
with respect to this vibration mode has to be determined.

To reduce the calculation expense, we can take advantage of the special
structure of K (properties of symmetry)

K,
K= (KK, = (99)

1%
k3 Ky ko kg

When compared to the results of the Riccati controller (eq. (95)), equation
(99) shows that to achieve an optimal controller, forces that act 1ike gyro-
scopic forces (k7> and nonconservative forces (k3) have to be added.
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The gain coefficients obtained when using the same weighting matrices as
given by equation (93) are

ky = -1.9x1Q9
ky = 2.3x104 (100)
kg = 2.4x103
k7 = -9.0x102

The results, plotted in figure 19, show that in contrast to the Riccati con-
troller, the system is stable at all rotor frequencies. The slight damping of
one of the vibration modes is still there, but this problem can be solved by
changing the actuator location (changing the controllability).

CONCLUDING REMARKS

Active vibration control of rotating machinery is being given more and
more attention by research institutes as well as by industry. The purpose of
this report i1s to present the problems confronted when applying active control
techniques to rotating machinery dynamics. The success or failure of active
measures is determined by the availability of appropriate actuators; by model-
ing of the entire system, including all active elements involved; by position-
ing of actuators and sensors; and by the control concept used. All of these
topics have been addressed, and their special problems have been discussed in
detall in this report. A survey of existing actuators as well as those that

are still in the design stage is included.

A very efficient method - called "hybrid multibody systems" - was
described and used to analyze rotor systems consisting of rigid and elastic
subsystems. This method allows a modular construction of the system, which is
very easy to handle on a computer and is both systematic and clear. Further-
more, control aspects can be adequately considered (e.g., simple system
adaptions, with respect to actuator and sensor locations, or optimization
strategies for designing the controller).

Such important aspects as controllability, observability, and spillover
were discussed. A method of checking on these system properties was outlined,
and examples were displayed. Then, the most frequently used control concepts
were introduced and their strengths and weaknesses pointed out. Real applica-
tions served as examples to demonstrate how to design an optimal controller.
These examples indicate a possibility for improving rotating machinery by
applying active vibration control.
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APPENDIX - SYMBOLS

A system matrix

A moment of inertia

A* characteristic membrane area

as vector of acceleration of center of mass
B control matfix

b thickness of disk

by gain coefficient of servo valve

C measurement matrix

C moment of inertia

CM membrane stiffness

CrR constant considering fluid flow losses
Cr constant considering ofl fnertia

Cy constant considering fluid flow losses
c stiffness coefficient

cy stiffness of servo valve

D damping matrix

d shaft diameter

dy damping of servo valve

E identity matrix

F vector of control forces

FV(S),F2(S)  transfer functions (Laplace domain)

f number of degrees of freedom

f€ external force vector acting on a body

dfe external force vector acting on a mass element or disk element
fv generalized coordinate of servo valve

G gyroscopic matrix
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ME
dme

weight

vector of generalized forces

tensor of moments of inertia of a body

tensor of moments of inertia of a mass element
index; or magnetic bearing current

performance index

Jacoblan matrix of rotation; 3w/3q

Jacobian matrix of translation; ar/aq

index

stiffness matrix; or gain matrix

servo valve constants

gain factor; or number of substructures

length

mass matrix

external torque vector acting on a body
external torque vector acting on a mass element
mass

mass element

mass influence of servo valve

nonconservative matrix

order of state space representation; or index
zero matrix

index

matrix for forces proportional to velocities; or solution of
algebraic Riccati equation; or solution of Ljapunov equation

pressure

matrix for forces proportional to displacements; or weighting

matrix
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q vector of generalized coordinates

R outer membrane radius

r inner membrane radius; or number of actuators
r(z,t) position vector

S Laplace operator; b + Jjw

T oil temperature

TCiw) transfer function

t torque vector

t time

Uy control voltage to the servo valve

u control vector

u(z) vector of admissible shape functions

ulz,t) distributed coordinate (displacement of rotor axis in

x-direction)
v(iz) . vector of admissible shape functions

v(z,t) distributed coordinate (displacement of rotor axis in

y-direction

X state space vector
X displacement of rotor in x—directibn

X8 bearing displacement in x-direction

Xo characteristic flow velocity

y measurement vector

y displacement of rotor in y-direction

z axial rotor coordinate

a angle of rotation about x-axis

] angle of rotation about y-axis

§ indicates vartation (here only of position); Dirac function
A efgenvalue
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w
wy
Subscripts
A

B

D

S
X,yY,2

Superscripts

e
S

T

servo valve damping coefficient
mass density

vector of rotation

small virtual rotion

rotor frequency

vector of angular velocity

skew-symmetric tensor of angular velocities

servo valve eigenfrequency

acceleration or actuator

bearing

derivative

integral; or inertial

magnetic bearing; or measuring location
output controller

proportional

rotor; or rotating

sensor location; or state controller

directions of coordinates

external
center of mass

transposed

Mathematical symbols

aERn

A € RM,N

vector a of dimension n x 1

matrix A of dimension mx n
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() derivative with respect to time; 3/3t

(é) integral over entire system
§ variation with respect to displacements or rotation (no time
varfation)
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